Volume 7, Issue 4, December 2019, Page: 77-89
Recent Progressive Status of Materials for Solar Photovoltaic Cell: A Comprehensive Review
Jamilu Ya’u Muhammad, Department of Mechanical Engineering, Bayero University, Kano, Nigeria
Abudharr Bello Waziri, Department of Mechanical and Production Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
Abubakar Muhammad Shitu, School of Technology, Binyaminu Usman Polytechnic, Hadejia, Nigeria
Umar Muhammad Ahmad, Department of Mechanical Engineering, Bayero University, Kano, Nigeria
Musa Hassan Muhammad, School of Technology, Binyaminu Usman Polytechnic, Hadejia, Nigeria
Yusuf Alhaji, School of Technology, Binyaminu Usman Polytechnic, Hadejia, Nigeria
Audu Taofeek Olaniyi, Department of Mechanical Engineering, Bayero University, Kano, Nigeria
Auwal Abdulkadir Bala, Department of Mechanical Engineering, Bayero University, Kano, Nigeria
Received: Sep. 10, 2019;       Accepted: Oct. 8, 2019;       Published: Oct. 30, 2019
DOI: 10.11648/j.sjee.20190704.14      View  546      Downloads  352
Abstract
Due to increase in demand of electricity and high environment hazard cause by fossil fuel in generation electricity, renewable energy (such as solar energy, wind energy and so on) researches are becoming mandatory to researchers especially scientists and engineers and in solar energy generation an electronic device is used to convert energy from sun into electricity which is known as solar photovoltaic cell and the efficiency of this device is improving by improving the materials used in manufacturing it. This paper was aimed to review the status of these materials for solar photovoltaic cell up to date, from the review it was discovered that the materials are classified based on the generations whereby their efficiencies are increasing from first generation to third generation. And the current market is mainly covered by the first two generations. The first generation comprises well-known medium/low cost technologies that lead to moderate yields. The second generation (thin-film technologies) includes devices that have lower efficiency albeit are cheaper to manufacture. The third generation presents the use of novel materials, as well as a great variability of designs, and comprises expensive but very efficient cells. Although there is fourth generation which their performance and stability was yet to be found as the review disclosed.
Keywords
Solar Photovoltaic Cell, Dye-Sensitized, Quantum Dot, Perovskite Solar Cell, Amorphous Silicon
To cite this article
Jamilu Ya’u Muhammad, Abudharr Bello Waziri, Abubakar Muhammad Shitu, Umar Muhammad Ahmad, Musa Hassan Muhammad, Yusuf Alhaji, Audu Taofeek Olaniyi, Auwal Abdulkadir Bala, Recent Progressive Status of Materials for Solar Photovoltaic Cell: A Comprehensive Review, Science Journal of Energy Engineering. Vol. 7, No. 4, 2019, pp. 77-89. doi: 10.11648/j.sjee.20190704.14
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Chu, Y. and Meisen, P. (2011) Review and Comparison of Different Solar Energy Technologies. Report of Global Energy Network Institute (GENI), Diego.
[2]
Choubey, P. C., Oudhia, A. and Dewangan, R. (2012) A Review: Solar Cell Current Scenario and Future Trends. Recent Research in Science and Technology, 4, 99-101.
[3]
McEvoy, A., Castaner, L. and Markvart, T. (2012) Solar Cells: Materials, Manufacture and Operation. 2nd Edition, Elsevier Ltd., Oxford, 3-25.
[4]
Fahrenbruch, A. L. and Bube, R. H. (1983) Fundamentals of Solar Cells. Academic Press Inc., New York.
[5]
Shogo I.; Takashi Y.; Kazuyuki M.; Akimasa Y.; Shigeru N.: Monolithically integrated CIGS submodules fabricated on flexible substrates. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5614095
[6]
Muñoz D.; et al.: Towards high efficiency on full wafer a-Si: H/c-Si heterojunction solar cells: 19.6% ON 148cm. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5614179
[7]
Tuma J.; Rusek S.; Martínek Z.; Chemišinec I.; Goňo R.: Spolehlivost v elektroenergetice. Conte, Praha, 2006, ISBN 80-239-6483-6.
[8]
Green M. A.; et al.: Hot carrier solar cells: Challenges and recent progress. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5614200\
[9]
Dou, L. T., You, J. B., Hong, Z. R., Xu, Z., Li, G., Street, R. A., et al. (2013). 25th anniversary article: a decade of organic/polymeric photovoltaic research. Adv. Mater. 25, 6642-6671. doi: 10.1002/adma.201302563.
[10]
Green, M. A., Hishikawa, Y., Warta, W., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., et al. (2017). Solar cell efficiency tables (version 50). Prog. Photovol. 25, 668–676. doi: 10.1002/pip.2909.
[11]
Jung, J. W., Jo, J. W., Jung, E. H., and Jo, W. H. (2016). Recent progress in high efficiency polymer solar cells by rational design and energy level tuning of low bandgap copolymers with various electron-withdrawing units. Org. Electron. 31, 149–170. doi: 10.1016/j.orgel.2016.01.034.
[12]
Li, S., Ye, L., Zhao, W. C., Zhang, S. Q., Mukherjee, S., Ade, H., et al. (2016). Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 28, 9423–9429. doi: 10.1002/adma.201602776.
[13]
Singh, R. P., and Kushwaha, O. S. (2017). Progress towards efficiency of polymer solar cells. Adv. Mater. Lett. 08, 02–07. doi: 10.5185/amlett.2017.7005.
[14]
Zhao, W., Li, S., Yao, H., Zhang, S., Zhang, Y., Yang, B., et al. (2017). Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151. doi: 10.1021/jacs.7b02677.
[15]
Parida B.; Iniyan S.; Goic R. (2011). A review of Solar Photovoltaic Technologies. Renewable and Sustainable Energy and Reviews, (15). 1625-1636. Doi: 10.1016/j.rser.2010.11.032.
[16]
Rana, S. (2013) A Study on Automatic Dual Axis Solar Tracker System using 555 Timer. International Journal of Scientific & Technology Research, 1, 77-85.
[17]
Bagher, A. M., Vahid, M. M. A. and Mohsen, M. (2015) Types of Solar Cells and Application. American Journal of Optics and Photonics, 3, 94-113.
[18]
Whitburn, G. (2012) Exploring Green Technology, Fundamental Advantages and Disadvantages of Solar Energy.
[19]
Liu, Z. L., Sun, J. M., Zhu, Y. X., Liu, P., Zhang, L. J., Chen, J. W., et al. (2015). Low band-gap benzodithiophene-thienothiophenecopolymers: the effect of dual two-dimensional substitutions on optoelectronic properties. Sci. China Chem. 58, 267–275. doi: 10.1007/s11426-014-5223-7
[20]
Chen, K. S., Yip, H. L., Salinas, J. F., Xu, Y. X., Chueh, C. C., and Jen, A. K. Y. (2014). Strong photocurrent enhancements in highly efficient flexible organic solar cells by adopting a microcavity configuration. Adv. Mater. 26, 3349–3354. doi: 10.1002/adma.201306323
[21]
Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D. (2015). Solar cell efficiency tables (Version 45). Prog. Photovol. 23, 1–9. doi: 10.1002/pip.2573.
[22]
Kaltenbrunner, M., White, M. S., Glowacki, E. D., Sekitani, T., Someya, T., Sariciftci, N. S., et al. (2012). Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3: 770. doi: 10.1038/ncomms1772.
[23]
Singh, R. P., and Kushwaha, O. S. (2013). Polymer solar cells: an overview. Macromol. Symp. 327, 128–149. doi: 10.1002/masy.201350516.
[24]
Sondergaard, R., Hosel, M., Angmo, D., Larsen-Olsen, T. T., and Krebs, F. C. (2012). Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 36–49. doi: 10.1016/S1369-7021 (12) 70019-6.
[25]
Sun, J. M., Zhu, Y. X., Xu, X. F., Lan, L. F., Zhang, L. J., Cai, P., et al. (2012). High efficiency and high voc inverted polymer solar cells based on a low-lying HOMO polycarbazole donor and a hydrophilic polycarbazole inter layer on ITO cathode. J. Phys. Chem. C 116, 14188–14198. doi: 10.1021/jp3009546.
[26]
Deshmukh MK, Deshmukh SS. Modeling of hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 2008; 12: 235–49.
[27]
Helal AM, Al-Malek SA, Al-Katheeri ES. Economic feasibility of alternative designs of a PV-RO desalination unit for remote areas in the United Arab Emirates. Desalination 2008; 221: 1–16.
[28]
Shaahid SM, Elhadidy MA. Economic analysis of hybrid photovoltaic–diesel–battery power systems for residential loads in hot regions—A step to clean future. Renewable and Sustainable Energy Reviews 2008; 12: 488–503.
[29]
Zervas PL, Sarimveis H, Palyvos JA, Markatos NCG. Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells. Journal of Power Sources 2008; 181: 327–38.
[30]
Katti PK, Khedkar MK. Alternative energy facilities based on site matching and generation unit sizing for remote area power supply. Renewable Energy 2007; 32: 1346–62.
[31]
Bitterlin IF. Modelling a reliable wind/PV/storage power system for remote radio base station sites without utility power. Journal of Power Sources 2006; 162: 906–12.
[32]
John PB, David GI. A probabilistic method for calculating the usefulness of a store with finite energy capacity for smoothing electricity generation from wind and solar power. Journal of Power Sources 2006; 162: 943–8.
[33]
Maclay JD, Brouwer J, Scott Samuelsen G. Dynamic analyses of regenerative fuel cell power for potential use in renewable residential applications. International Journal of Hydrogen Energy 2006; 31: 994–1009.
[34]
Nelson DB, Nehrir NH, Wang C. Unit sizing and cost analysis of standalone hybrid wind/PV/fuel cell power generation systems. Renewable Energy 2006; 31: 1641–56.
[35]
El-Shatter TF, Eskander MN, El-Hagry MT. Energy flow and management of a hybrid wind/PV/fuel cell generation system. Energy Conversion and Management 2006; 47: 1264–80.
[36]
Rajendra Prasad A, Natarajan E. Optimization of integrated photovoltaic–wind power generation systems with battery storage. Energy 2006; 31: 1943–54.
[37]
Schmid LA, Hoffmann CAA. Replacing diesel by solar in the Amazon: short-term economic feasibility of PV-diesel hybrid systems. Energy Policy 2004; 32: 881–98.
[38]
El-Shatter ThF, Eskandar MN, El-Hagry MT. Hybrid PV/fuel cell system design and simulation. Renewable Energy 2002; 27: 479–85.
[39]
Green, M. A. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Prog. Photovolt. 2001, 9, 123–135.
[40]
M. A. Green, Phys. E, 2002, 14, 65–70.
[41]
Conibeer, G. Third-generation photovoltaics. Mater. Today, 2007, 10, 42–50.
[42]
Zhao J, Wang A, Green MA, et al. (1998) 19.8% efficient ‘honeycomb’ textured multi-crystalline and 24.4% mono-crystalline silicon solar cells. Applied Physics Letters 73: 1991–1993.
[43]
Joel Jean, Patrick R. Brown, Robert L. Jaffe, Tonio Buonassisi and Vladimir Bulovic. Pathways for solar photovoltaic. Energy Environ. Sci., 2015, 8, 1200-1219.
[44]
José A. L., Ana M. D., and Rafael P. C. (2019). Materials for Photovoltaic: State of Art and Recent Developments. International Journal of Molecular Science, 20, 976; doi: 10.3390/ijms20040976.
[45]
Kirk-Othmer. Silicon. In Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-471-48494-3.
[46]
Sampaio, P. G. V.; González, M. O. A. Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–601.
[47]
Kivambe, M.; Aissa, B.; Tabet, N. Emerging Technologies in Crystal Growth of Photovoltaic Silicon: Progress and Challenges. Energy Procedia 2017, 130, 7–13.
[48]
Adamian ZN, Hakhoyan AP, Aroutiounian VM, Barseghian RS, Touryan K. Investigations of solar cells with porous silicon as antireflection layer. Solar Energy Materials & Solar Cells 2000; 64: 347–51.
[49]
Bruton TM. General trends about photovoltaics based on crystalline silicon. Solar Energy Materials & Solar Cells 2002; 72: 3–10.
[50]
Schlemm H, Mai A, Roth S, Roth D, Baumgartner KM, Mueggeb H. Industrial large scale silicon nitride deposition on photovoltaic cells with linear microwave plasma sources. Surface and Coatings Technology 2003; 174–175: 208–11.
[51]
Van der Zwaan B, Rabl A. Prospects for PV: a learning curve analysis. Solar Energy 2003; 74: 19–31.
[52]
McCann M, Weber K, Blakers A. Surface passivation by rehydrogenation of silicon-nitride-coated silicon wafers. Progress in Photovoltaics: Research and Applications 2005; 13: 195–200.
[53]
Best Research-Cell Efficiencies (rev. 12-18-2014), National Renewable Energy Laboratory, 2014.
[54]
Jayawardena, K. D. G. I.; Rozanski, L. J.; Mills, C. A.; Beliatis, M. J.; Nismy, N. A.; Silva, S. R. P. ‘Inorganics-in-Organics’: Recent developments and outlook for 4G polymer solar cells. Nanoscale 2013, 5, 8411–8427.
[55]
Chopra, K. L.; Paulson, P. D.; Dutta, V. Thin-film solar cells: An overview. Prog. Photovolt. 2004, 12, 69–92.
[56]
Izu, M.; Ovshinsky, S. R.; Deng, X.; Krisko, A.; Ovshinsky, H. C.; Narasimhan, K. L.; Young, R. Continuous roll-to-roll amorphous silicon photovoltaic manufacturing technology. AIP Conf. Proc. 1994, 306, 198–218.
[57]
Yang J., Banerjee A., Glatfelter T., Sugiyama S. and Guha S. (1997). Recent progress in amorphous silicon alloy leading to 13% stable efficiency. Proc. 26th IEEE PVSC, Anaheim, 563-668.
[58]
Hishikawa Y., Kinoshita T., Shima M, Tanaka M., Kiyama S., Tsuda S. and Hakano S. (1997). Optical confinement and optical loss in high-efficiency a-Si solar cells. Proc. 26th IEEE PVSC, Anaheim, 615-618.
[59]
Handbook of Photovoltaic Science and Engineering, ed. A. Luque and S. Hegedus, 2nd edn, 2011.].
[60]
Photovoltaics Report, Fraunhofer ISE, 2014.
[61]
D. L. Staebler and C. R. Wronski, Appl. Phys. Lett., 1977, 31, 292–294.
[62]
Boutchich M, Alvarez J, Diouf D, et al. (2012) Amorphous silicon diamond based hetero junctions with high rectification ratio. Journal of Non-Crystalline Solids 358: 2110–2113.
[63]
Mah O (1998) Fundamentals of photovoltaic materials. National Solar Power Research Institute, Inc. Retrieved from: http://userwww.sfsu.edu/ciotola/solar/pv.pdf
[64]
Carlson DE and Wronski CR (1976) Amorphous silicon solar cell. Applied Physics Letters 28: 671–673.
[65]
Rech B and Wagner H (1999) Potential of amorphous silicon for solar cells. Applied Physics A Materials Science & Processing 69: 155–167.
[66]
Yang J, Banerjee A, Guha S. Amorphous silicon based photovoltaics-from earth to the “final frontier”. Solar Energy Materials & Solar Cells 2003; 78: 597–612.
[67]
Lund CP, Luczak K, Pryor T, Cornish JCL, Jennings PJ, Knipe P, Ahjum F. Field and laboratory studies of the stability of amorphous silicon solar cells and modules. Renewable Energy 2001; 22: 287–94.
[68]
Tawada Y, Yamagishi H. Mass-production of large size a-Si modules and future plan. Solar Energy Materials & Solar Cells 2001; 66: 95–105.
[69]
Shirland, F. A, (1996): The history, Design, fabrication and performance of CdS thin film solar cells. A paper presented at the coloque international sur les photopiles en couches minces Marseille, France.
[70]
Reynolds, D. C., Leies, G., Antes, L. L. and Marburger, R. E., (1954): Photovoltaic effects in cadmium sulphide, phys. Rev., Volume 96, no. 2, October 15th, 1954, pp 533-534.
[71]
Mursheda Hussain, (2004): Vapor CdCl2 processing of CdTe solar cells. A master’s thesis submitted to the department of Electrical engineering, collage of engineering, Florida U. S. A.
[72]
Boer KW (2011) Cadmium sulfide enhances solar cell efficiency. Energy Conversion and Management 52: 426–430.
[73]
Compaan A. D (2004). The status of and challenges in CdTe thin-film solar-cell technology. MRS Symposium Proceedings 808: 545–555.
[74]
Schock HW and Pfisterer F (2011) Thin-film solar cells: past, present and future. Renewable Energy World 4: 75–87.
[75]
Razykov TM, Rech B and Tiwari AN (2004) Special issue on thin Film PV. Solar Energy 77: 665–666.
[76]
Nowshad A, Takayunki I, Akira Y, et al. (2001) High efficient 1 µm thick CdTe solar cells with textured TCOs. Solar Energy Materials and Solar Cells 67: 195–201.
[77]
Upadhayaya HM, Razykov TM, Tiwari A, et al. (2007) Photovoltaics fundamentals, technology and application. In: Goswami DY and Kreith F (eds) Handbook of Energy Efficiency and Renewable Energy. New York: CRC Press, pp. 23-1–23-63.
[78]
Ferekides C. and Britt J. (1993). Thin film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letter 62: 2851–2852.
[79]
Aramoto T, Kumaza S, Higuchi H, et al. (1997) 16.0% efficient thin-film CdS/CdTe solar cells. Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 36: 6304–6305.
[80]
Wu X, Keane JC, DeHart C, et al. (2001) 16.5% efficient CdS/CdTe polycrystalline thin film solar cell. In: Proceedings of the 17th European photovoltaic solar energy conference, Munich, 14–17 October 2001, pp. 995–999.
[81]
Goetzberger A, Hebling C, Schock H-W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports 2003; 40: 1–46.
[82]
Desai D, Hegedus S, McCandless B, Birkmire R, Dobson K, Ryan D. How CDTE solar cells operate: determining collection using bifacial device character- ization. Photovoltaic energy conversion. In: Proceedings of the conference record of the IEEE fourth world conference; 2006. p. 368–71.
[83]
Tang J, Huo Z, Brittman S, Gao H, Yang P. Solution-processed core–shell nanowires for efficient photovoltaic cells. Nature Nanotechnology 2011; 6: 568–72.
[84]
Todorov T, Gunawan O, Chey SJ, de Monsabert TG, Prabhakar A, Mitzi DB. Progress towards marketable earth-abundant chalcogenide solar cells. Thin Solid Films 2011; 519: 7378–81.
[85]
Ferekides CS, Marinskiy D, Viswanathan V, Tetali B, Palekis V, Selvaraj P, Morel DL. High efficiency CSS CdTe solar cells. Thin Solid Films 2000; 361–362: 520–6.
[86]
Pfisterer F. The wet-topotaxial process of junction formation and surface treatments of CuS–CdS 2 thin-film solar cells. Thin Solid Films 2003; 431–432: 470–6.
[87]
V. Fthenakis and K. Zweibel, CdTe PV: Real and Perceived EHS Risks, National Center for Photovoltaics Review Meeting, Denver, 2003.
[88]
Richards BS, McIntosh KR. Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations. Progress in Photovoltaics: Research and Applications 2007; 15: 27–34.
[89]
Niki, S.; Contreras, M.; Repins, I.; Powalla, M.; Kushiya, K.; Ishizuka, S.; Matsubara, K. CIGS absorbers and processes. Prog. Photovolt. 2010, 18, 453–466.
[90]
Repins I, Conteras M, Egaas B, et al. (2008) 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill actor. Progress in Photovoltaics: Research and Application 16: 235–239.
[91]
Powalla M (2006) The R&D potential of CIS thin-film solar modules. In: Proceedings of the 21st European photovoltaic solar energy conference, Dresden, September, pp. 1789–1795.
[92]
Osborne M (2014) PVTECH. Siva Power claims 18.8% lab CIGS efficiency. Available at: http://www.pv-tech.org/news/siva_power_claims_18.8_lab_cigs_efficiency
[93]
M. J. Hetzer, Y. M. Strzhemechny, M. Gao, M. A. Contreras, A. Zunger and L. J. Brillson, Appl. Phys. Lett., 2005, 86, 162105.
[94]
J. Werner, J. Mattheis and U. Rau, Thin Solid Films, 2005, 480–481, 399–409.
[95]
S. Nishiwaki, S. Siebentritt, P. Walk and M. Ch. Lux-Steiner, Prog. Photovoltaics, 2003, 11, 243–248.
[96]
Otte, K., Makhova, L., Braun, A., and Konovalov, I. 2006. Flexible Cu (In, Ga) Se2 thin-film solar cells for space application. Thin Solid Films 511–12: 613–22.
[97]
Guimard, D., Bodereau, N., Kurdi, J., et al. 2003. Efficient Cu (In, Ga) Se2 based solar cells prepared by electrodeposition. Mater. Res. Soc. Symp. Proc. 763: B6.9.1–6.
[98]
Lippold, G., Neumann, H., and Schindler, A. 2001. Ion beam assisted deposition of Cu (In, Ga) Se2 films for thin film solar cells. Mater. Res. Soc. Symp. Proc. 668: H3.9.1–6.
[99]
Mitzi, D. B., Yuan, M., Liu, W., et al. 2009. Hydrazine-based deposition route for device quality CIGS films. Thin Solid Films 517: 2158–62.
[100]
Li, X. C., Soltesz, I., Wu, M., Ziobro, F., Amidon, R., and Kiss, Z. 2008. A nanoparticle ink printing process for all printed thin film copper-indium-selenide (CIS) solar cells. In Proceedings of the SPIE: Nanoscale Photonic and Cell Technologies for Photovoltaics, San Diego, CA, August, 7047: 70470E-70470E-9.
[101]
Matsunaga, K., Komaru, T., Nakayama, Y., Kume, T., and Suzuki, Y. 2009. Mass-production technology for CIGS modules. Solar Energy Mater. Solar Cells, 93: 1134–8.
[102]
Green, M. A. 2003. Third generation photovoltaics: Advanced solar energy conversion. Berlin: Springer-Verlag.
[103]
Martí, A.; Luque, A. Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization; CRC Press: Boca Raton, FL, USA, 2003; p. 136, ISBN 9780750309059.
[104]
Tandem Solar Cells. Available online: http://plasticphotovoltaics.org/lc/lc-polymersolarcells/lc-tandem.html
[105]
Loucas T. (2010). Nanotechnology for Photovoltaics. Taylor and Francis Group LLC, Boca Raton.
[106]
Marti, A., and Araujo, G. L. 1996. Limiting efficiencies for photovoltaic energy conversion in multigap systems. Solar Energy Mater. Solar Cells 43: 203.
[107]
Goetzberger A and Hoffmann VU (2005) Photovoltaic solar energy generation. Springer Series in Optical Sciences, p.112.
[108]
Yamaguchi M, Nishimura K, Sasaki T, et al. (2008) Novel materials for high-efficiency III–V multijunction solar cells. Solar Energy 82: 173–180.
[109]
Shockley W and Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. Journal of Applied Physics 32 (3): 510–519.
[110]
Guha S (2004) Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition. Solar Energy 77: 887–892.
[111]
Diefenbach KH (2005) Wiped away. Photon International, February: pp. 48–67.
[112]
Yamamoto K, Nakajima A, Yoshimi M, et al. (2004) A high efficiency thin film silicon solar cell and module. Solar Energy 77: 939–949.
[113]
Wesoff E (2013) GreentechSolar. Sharp hits record 44.4% efficiency for triple-junction solar cell. Available at: http://www.greentechmedia.com/articles/read/Sharp-Hits-Record-44.4-Efficiency-For-Triple-Junction-Solar-Cell
[114]
Hoppe, H. and Sariciftci, N. S. (2008) Polymer Solar Cells. Advances in Polymer Science, 214, 1.
[115]
Almosni, S.; Delamarre, A.; Jehl, Z.; Suchet, D.; Cojocaru, L.; Giteau, M.; Behaghel, B.; Julian, A.; Ibrahim, C.; Tatry, L.; et al. Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Sci. Technol. Adv. Mater. 2018, 19, 336–369.
[116]
Tian, J.; Cao, G. Semiconductor quantum dot-sensitized solar cells. Nano Rev. 2013, 4, 22578.
[117]
Yoshitaka O.; Jiko Soshiki ka Ryoshi Dotto Cho Koshi to Kokuritsu Taiyo Denchiheno Oyo; (2006). Application to self-assembler quantum dot super-grid and highly effective solar battery. The Japanese Association for Crystal Growth Cooperation (JACG) Magazine. Volume 33, Number 2.
[118]
Yoshitaka O.; Ryuji O.; Ryoshi; Nano Kozo wo Donyu Shita Jisedai Taiyo Denchi; (2007). The next generation solar battery that introduces quantum nano-structure. Applied physics. Volume76, Number 1.
[119]
Zin, N. S.; McIntosh, K.; Fong, K.; Blakers, A. High Efficiency Silicon Solar Cells. Energy Procedia 2013, 33, 1–10.
[120]
Luther, J. M.; Gao, J.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22, 3704–3707.
[121]
Mora-Seró, I.; Bisquert, J. Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells. J. Phys. Chem. Lett. 2010, 1, 3046–3052.
[122]
Du, J.; Du, Z.; Hu, J.-S.; Pan, Z.; Shen, Q.; Sun, J.; Long, D.; Dong, H.; Sun, L.; Zhong, X.; et al. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6. J. Am. Chem. Soc. 2016, 138, 4201–4209.
[123]
Sogabe, T.; Shen, Q.; Yamaguchi, K. Recent progress on quantum dot solar cells: A review. J. Photonics Energy 2016, 6, 040901.
[124]
Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett. 1997, 78, 5014–5017.
[125]
Antolin E., Marti A., Stanley C. R., Farmer C. D., Canovas E., Lopez N., Linares P. G., Luque A. (2008). Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell. Thin Solid Films; 516: 6716–22.
[126]
Hagfeldt A., Boschloo G., Sun L., Kloo L. and Pettersson H., (2010). Chemical Review, 110, 6595–6663.
[127]
Gratzel M. (2005). Inorganic Chemistry, 44, 6841–6851.
[128]
Gratzel M. (2003). Journal of Photochemistry and Photobioliogy, C, 4, 145–153.
[129]
Srinivas, B., Balaji, S., Nagendra Babu, M. and Reddy, Y. S. (2015). Review on Present and Advance Materials for Solar Cells. International Journal of Engineering Research-Online, 3, 178-182.
[130]
Han, L., Fukui, A., Fuke, N., Koide, N., and Yamanaka, R. (2006). High efficiency of dye-sensitized solar cell and module. In Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Vol. 1, Waikoloa, HI, May 7–12, p. 179.
[131]
Li, B., Wang, L., Kang, B., Wang, P. and Qiu, Y. (2006). Review of Recent Progress in Solid-State Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells, 90, 549-573.
[132]
Graetzel, M., Janssen, R. A. J., Mitzi, D. B. and Sargent, E. H. (2012). Materials Interface Engineering for Solution-Processed Photovoltaics. Nature, 488, 304-312.
[133]
Suhaimi, S., Shahimin, M. M., Alahmed, Z. A., Chyský, J. and Reshak, A. H. (2015). Materials for Enhanced Dye-Sensitized Solar Cell Performance: Electrochemical Application. International Journal of Electrochemical Science, 10, 28-59.
[134]
Liang, M., Xu, W., Cai, F. S., Chen, P. Q., Peng, B., Chen, J. and Li, Z. M. (2007). New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 111, 4465-4472.
[135]
Millington, K. R.; Fincher, K. W.; King, A. L. (2007). Mordant dyes as sensitisers in dye-sensitised solar cells. Solar Energy Material Solar Cells, 91, 1618–1630.
[136]
Kim M-J, Yu Y-J, Kim J-H, Jung Y-S, Kay K-Y, Ko S-B, et al. (2012). Tuning of spacer groups in organic dyes for efficient inhibition of charge recombination in dye-sensitized solar cells. Dyes and Pigments; 95: 134–41.
[137]
Hara M. K. and Arakawa H. (2003). Dye-sensitized solar cells, Handbook of Photovoltaic Science and Engineering, ed A Luque and S Hegedus, J Wiley (New York), 663–700.
[138]
Li V., Zhu R. and Yang Y., (2012). Nature Photonics, 6, 153–161.
[139]
Kippelen B. and Bredas J. L., (2009). Energy and Environmental Science, 2, 251–261.
[140]
Riede V, Mueller T., Tress W., Schueppel R. and Leo K., (2008). Nanotechnology, 19, 424001.
[141]
Gunes S., Neugebauer H. and Sariciftci N. S., (2007). Chemical Review, 107, 1324–1338.
[142]
Shaheen S. E., Ginley D. S. and Jabbour G. E., (2005). MRS Bulletin, 30, 10–19.
[143]
Coakley K. M. and McGehee M. D., (2004). Chemical Materials, 16, 4533–4542.
[144]
Hoppe H. and Sariciftci N. S. (2004). Journal of Material Research, 19, 1924–1945.
[145]
Peumans P., Yakimov A. and Forrest S. R. (2003). Journal of Applied Physics, 93, 3693.
[146]
Wohrle D. and Meissner D., (1991). Advanced Materials, 3, 129–138.
[147]
Forrest, S. D. (2005). The limits to organic photovoltaic cell efficiency. MRS Bulletin 30: 28–21.
[148]
Dou L. T., You J. B., Yang J., Chen C. C., He Y. J., Murase S., Moriarty T., Emery K., Li G., Yang Y. (2012). Tandem polymer solar cells featuring a spectrally-matched low bandgap polymer. Nature Photonics; 6: 180–5.
[149]
Jorgensen M, Norrman K, Krebs F. C. (2008). Stability/degradation of polymer solar cells. Solar Energy Materials & Solar Cells; 92: 686–714.
[150]
Dennler G, Scharber M. C, Ameri T, Denk P, Forberich K, Waldauf C, Brabec C. J. (2008). Design rules for donors in bulk-heterojunction tandem solar cells-towards 15% energy conversion efficiency. Advanced Materials; 20: 579–83.
[151]
Yue S., Bin L., Di F., Ziruo H., Wenlian L. (2007). Rhenium (I) complex as an electron acceptor in a photovoltaic device. Journal of Alloys and Compounds; 432: L15–7.
[152]
Mozer A. J, Sariciftci N. S. (2006). Conjugated polymer photovoltaic devices and materials. C R Chimie; 9: 568–77.
[153]
Shrotriya V, Wu E. H. E, Li G, Yao Y, Yang Y. (2006). Efficient light harvestingin multiple-device stacked structure for polymer solar cells. Applied Physics Letter; 88, 064104/1–3.
[154]
Wei H, Li W, Li M, Su W, Xin Q, Niu J, Zhang Z, Hu Z. (2006). White organic electroluminescent device with photovoltaic performances. Applied Surface Science; 252: 2204–8.
[155]
Bernede J. C, Derouiche H, Djara V. (2005). Organic photovoltaic devices: influence of the cell configuration on its performances. Solar Energy Materials and Solar Cells; 87: 261–70.
[156]
Yakimov A, Forrest S. R. (2002). High photovoltage multiple-heterojunctionorganic solar cells incorporating interfacial metallic nanoclusters. Applied Physics Letter; 80: 1667–9.
[157]
Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. (2014). "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells". Energy & Environmental Science 7 (3): 982.
[158]
Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J. (2014). "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications". Energy & Environmental Science 7 (9): 3061.
[159]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizersvfor photovoltaic cells. Journal American Chemical Society, 131, 6050–6051.
[160]
Djurisic, A. B.; Liu, F. Z.; Tam, H. W.; Wong, M. K.; Ng, A.; Surya, C.; Chen, W.; He, Z. B. (2017). Perovskite solar cells-An overview of critical issues. Progress on Quantum Electron. 53, 1–37.
[161]
Salhi, B.; Wudil, Y. S.; Hossain, M. K.; Al-Ahmed, A.; Al-Sulaiman, F. A. (2018). Review of recent developments and persistent challenges in stability of perovskite solar cells. Renewable Sustainable Energy Review, 90, 210–222.
[162]
Nam-Gyu P. (2013). Organometal Perovskite Light Absorbers toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. Journal of Physical chemistry letters, 4, 2423–2429.
[163]
PV Education. Retrieved from: http://www.pveducation.org
[164]
Kim, H.-S. et al. (2012). Sci. Rep. 2, 591.
[165]
Im, J.-H. et al. (2011). Nanoscale, 3, 4088–4093.
[166]
Research Cell Efficiency Records, NREL. Available at: http://www.nrel.gov/ncpv/
[167]
P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman and V. Bulovi´c, ACS Nano, 2014, 8, 5863–5872.
[168]
A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent, Nat. Nanotechnol., 2012, 7, 577–582.
[169]
J. Jasieniak, M. Califano and S. E. Watkins, ACS Nano, 2011, 5, 5888–5902.
[170]
J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury and E. H. Sargent, Nat. Mater., 2011, 10, 765–771.
[171]
D. D. Wanger, R. E. Correa, E. A. Dauler and M. G. Bawendi, Nano Lett., 2013, 13, 5907–5912.
[172]
D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon and E. H. Sargent, Nat. Commun., 2014, 5, 3803.
[173]
M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photonics, 2014, 8, 506–514.
[174]
K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley and J. R. Durrant, Sol. Energy Mater. Sol. Cells, 2006, 90, 3520–3530.
[175]
G. Li, R. Zhu and Y. Yang, Nat. Photonics, 2012, 6, 153–161.
[176]
R. R. Lunt, T. P. Osedach, P. R. Brown, J. A. Rowehl and V. Bulovi´c, Adv. Mater., 2011, 23, 5712–5727.
Browse journals by subject