Volume 8, Issue 3, September 2020, Page: 33-43
Mechanical Characterisation of Insulation Panels Based on Vegetable Typha Domingensis and Starch
Henri Wilfried Hounkpatin, Laboratory of Radiation Physics (LPR), University of Abomey-Calavi, Cotonou, Benin
Victorin Kouamy Chegnimonhan, Thermics and Energy Laboratory of Nantes, Nantes, France
Clement Adeyemi Kouchade, Laboratory of Radiation Physics (LPR), University of Abomey-Calavi, Cotonou, Benin
Basile Bruno Kounouhewa, Laboratory of Radiation Physics (LPR), University of Abomey-Calavi, Cotonou, Benin
Received: Aug. 5, 2020;       Accepted: Aug. 27, 2020;       Published: Sep. 16, 2020
DOI: 10.11648/j.sjee.20200803.11      View  54      Downloads  12
Abstract
The results show that the variation in the swelling rate of some samples analysed describes a sinusoid with values higher than those recommended by the AINSI A 208.1 1999 standard. The use of these panels in a dry environment is therefore strongly recommended. The Young's modulus of elasticity (YME) and the breaking Modulus of Rupture (MOR) of the composite materials are between 0.91 and 2.31 GPa and 5.39 and 16.43 MPa. These values meet the 1999 ANSI 208.1 standard, which requires that the YEM and MOR of insulation boards in buildings be greater than or equal to 550 MPa and 3 MPa, respectively. Deformation at break varies between 8.40 and 13.05 mm. These values explain the non-ductile behaviour of these materials. Finally, the evolution of the mechanical properties of the material (Flexural Modulus of Elasticity (FME), MOR and deformation) as a function of the binder rate and the particle size distribution indicate that the presence of starch in the small particle sizes (≤ 0.425mm) favours the increase in the rigidity of the material. The breaking strength of the material (small granulometry) is greater with starch proportions ranging from 10 to 15%. The presence of the binder in the composite, whatever the granulometry, changes the behaviour of the material by increasing its deformation at breakage. With regard to flexural behaviour, typha particles with a particle size between 0.425 mm and 1.25 mm with a binder content of 10% to 15% are therefore more ductile. With these characteristics, the formulations M1 (10% starch; 0.425 mm) and M4 (15% starch; 0.425 mm) indicate the best mechanical properties.
Keywords
Typha Domingensis, Starch, Insulation, Mechanical Characterisation
To cite this article
Henri Wilfried Hounkpatin, Victorin Kouamy Chegnimonhan, Clement Adeyemi Kouchade, Basile Bruno Kounouhewa, Mechanical Characterisation of Insulation Panels Based on Vegetable Typha Domingensis and Starch, Science Journal of Energy Engineering. Vol. 8, No. 3, 2020, pp. 33-43. doi: 10.11648/j.sjee.20200803.11
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Hounkpatin H. W., Victorin K. V., Sèmassou G. C., Dirk R. N., and Kounouhewa B., (2018a). Simulation of the Thermal Behavior of Various Local Roofings for a Residential House in the Humid Tropics. Advances in Research, 15 (4): 1-15, 2018; Article no. AIR. 42065.
[2]
Hounkpatin H. W., Kounouhewa B., Chégnimonhan K. V., Sèmassou C. and Vianou A., (2018b). Numerical Investigation of the Effects of Insulated Envelopes on Hygrothermal Comfort within Habitats of Southern Benin: Test of a Local Material’’, Current Journal of Applied Science and Technology, vol31, n°6, pp. 1-19.
[3]
Osseni S. O. G., (2017) Thermomechanical formulation and characterisation of mortars reinforced with banana trunk fibres. Ph. D. Thesis, Université d’Abomey-Calavi, 146p.
[4]
Osseni S. O. G., Apovo B. D., Ahouannou C., Sanya E. A. et Jannot Y., (2016). Caractérisation thermique des mortiers de ciment dopés en fibres de coco par la méthode du plan chaud asymétrique à une mesure de température. Afrique SCIENCE 12 (6) 119-129. ISSN 1813-548X, http://www.afriquescience.info.
[5]
Youngquist, J. A., Myers, G. C. and Murmanis, L. L. (1987) Resin Distribution in Hardboard: Evaluated by Internal Bond Strength and Fluorescence Microscopy. Wood and Fiber Science, 19, 215-224.
[6]
Youngquist, J. A., English, B. E., Scharmer, R. C., Chow, P. and Shook, S. (1994) Literature Review on Use of Nonwood Plant Fibers for Building Materials and Panels. US Government Printing Office, 146 p.
[7]
Onuorah E. O., Nnabuife E. C., Nwabanne J. T., (2014). Potentials of Bambusa vulgaris Grown in Southeast Nigeria for the Manufacture of Wood-Cement Composite Panels. Journal of Minerals and Materials Characterization and Engineering, Vol. 2 No. 5.
[8]
Nenonene A. Y., Koba K., Sanda K., Rigal L., (2014). Composition chimique et propriétés adhésives d’extraits d’organes tannifères de quelques plantes du Togo pour l’agglomération de particules de tige de kénaf (Hibiscus cannabinus L.). Journal de la Société Ouest-Africaine de Chimie J. Soc. Ouest-Afr. Chim., 037: 49- 55 19ème Année.
[9]
Soulama S., Atcholi K. E, Naon B., Kadja K., Sanda K.. (2015). Optimization of the Implementation Process and Physical Properties of Cotton (Gossipium hirsutum) and Kenaf (Hibiscus cannabinus L.) Wooden Chipboard. Engineering, 2015, 7, 803-815.
[10]
Soviwadan Drovou and Assogba Kassegne K., (2015). Élaboration et caractérisation mécanique et physique des panneaux de particules de sciure de kapokier avec la poudre tanifère de la cosse de gousse de néré. European Scientific Journal, vol. 11, No. 6 ISSN: 1857-7881.
[11]
Hounkpatin H. W., Chégnimonhan V. K., Allognon-Houessou E., Kounouhewa B. B. (2020). Thermal insulation panel based on vegetable typha domengensis and Starch: Formulation and chemical characterization. International Journal of Sustainable and Green Energy, 8 (2): 29-37.
[12]
Robertson J. A., de Monredon F. D., Dysseler P., Guillon F., Amado R. and Thibault J. F. 2000. Hydration Properties of Dietary Fibre and Resistant Starch: a European Collaborative Study. Lebensm.-Wiss. u.-Technol., 33: 72-79.
[13]
Denarié E., Brühwiler E., Oesterlee C., Redaelli D., Suter R., (2015). Essais de caractérisation - réponse en traction. Acte de la 2ème journée d'étude du 22 octobre 2015: Béton fibré ultra-performant-Concevoir, dimensionner, construire, 25-36, Switzerland, Haute école d'ingénierie et d'architecture Fribourg und Berner Fachhochschule.
[14]
Drovou S., Assogba K. K., Sanda K., (2015). Elaboration et caractérisation mécanique et physique des panneaux de particules de sciure de kapokier avec la poudre tanifère de la cosse de gousse de néré. European Scientific Journal. vol. 11, pp 57-69.
[15]
Soulama S., (2014). Caractérisation mécanique et thermique de biocomposites à matrice polystyrène recyclé renforcée par des coques de cotonnier (Gossypium hirsutum L.), ou de particules de bois de kénaf (Hibiscus Cannabinus L.)”. Thèse Sciences pour l’ingénieur (Génie Mécanique). Belfort - Montbéliard: Université de Technologie de Belfort – Montbéliard.
[16]
Kord B., Zare H., Hosseinzadeh A., (2016). Evaluation of the mechanical and physical properties of particleboard manufactured from Canola (Brassica napus) STRAWS. Maderas. Ciencia y tecnología 18 (1): 9-18.
[17]
Misnon, M. I., Islam, M. M., Epaarachchi, J. A. and Lau, K. T. (2014). Potentiality of Utilising Natural Textile Materials for Engineering Composites Applications. Materials and Design, 59, 359-368. http://dx.doi.org/10.1016/j.matdes.2014.03.022.
[18]
Niang I., (2018). Contribution à la certification des Bâtiments durables au Sénégal: Cas d’étude des matériaux de construction biosources à base de typha, Thèse de doctorat, Université de Thiès, Sénégal.
[19]
Beaudoin M., (1976). Essai d’auto-agglomération à sec des particules de bois. Thèse de maîtrise de l’Université Laval. Département des sciences du bois. 93 p.
[20]
Oksman et Clemons, (1998). Mechanical Properties of Impact Modified Polypropylene Wood Flour Composites. Journal of Applied Polymer Science. 67 (9): 1503-1513.
[21]
Li M., Khelifa M., El Ganaoui M. (2017). Mechanical characterization of concrete containing wood shavings as aggregates, International Journal of Sustainable Built Environment. 6, 587-596.
[22]
Sangamesh R., Kumar N., Ravishankar K. S. and Kulkarni S. M., (2018). Mechanical Characterization and Finite Element Analysis of Jute-Epoxy Composite. MATEC Web of Conferences 144, 02014.
[23]
Laminates I. G.-M., Caminero M. A., Rodríguez G. P. and López-Cela J. J., (2019). Effect of Thermal Ageing on the Impact Damage Resistance and Tolerance of Carbon-Fibre-Reinforced Epoxy. Polymers, 11, 160, pp 1-15. doi: 10.3390/polym11010160.
[24]
Eneyw G. and Negash A., (2019). Study on the Mechanical Characterization of Composite Materials for Automotive Wheel Application. J Material Sci Eng 8: 548, pp 1-4.
[25]
Nenonene A. Y., (2009). Elaboration et caractérisation mécanique de panneaux de particules de tige de kénaf et de bioadhésifs à base de colle d’os, de tannin ou de mucilage’’, Thèse de doctorat, Université de Toulouse, France, 2009.
Browse journals by subject